
Node Basics
Node.js is one of the biggest explosions in the past few years. Having the ability to run JavaScript

(the client-side language many are familiar) on the server is an enticing notion.

Front-end developers that know JavaScript well can easily expand their knowledge to know back-

end server-side code.

Node is built on Google Chrome’s V8 JavaScript runtime and sits as the server-side platform in

your MEAN (https://en.wikipedia.org/wiki/MEAN_(software_bundle)) application. So what does

that mean? In a LAMP stack you have your web server (Apache, Nginx, etc.) running with the

server-side scripting language (PHP, Perl, Python) to create a dynamic website. The server-side

code is used to create the application environment by extracting data from the database

(MYSQL) and is then interpreted by the web server to produce the web page.

When a new connection is requested, Apache creates a new thread or process to handle that

request, which makes it multithreaded. Often you will have a number of idle child processes

standing by waiting to be assigned to a new request. If you configure your server to only have 50

https://en.wikipedia.org/wiki/MEAN_(software_bundle)

idle processes and 100 requests come in, some users may experience a connection timeout until

some of those processes are freed up. Of course there are several ways to handle this scalability

more efficiently, but in general Apache will use one thread per request, so to support more and

more users you will eventually need more and more servers.

This is where Node.js shines. Node is an event driven language that can play the same role as

Apache. It will interpret the client-side code to produce the web page. They are similar in that

each new connection fires a new event, but the main distinction comes from the fact that Node is

asynchronous and single threaded. Instead of using multiple threads that sit around waiting

for a function or event to finish executing, Node uses only one thread to handle all requests.

Although this may seem inefficient at first glance, it actually works out well given the

asynchronous nature of Node.

Why Node?

Node let’s us build real-time open APIs that we can consume and use with our applications.

Transferring data or applications like chat systems, status updates, or almost any other scenario

that requires quick display of real-time data is where Node does its best.

Some Example Node Uses

Chat client

Real-time user updates (like a Twitter feed)

RSS Feed

Online Shop

Polling App

Now that we have a brief overview of Node, let's dive in and build two applications:

A very simple app to show the basics of starting a Node project

A more fully-fledged application where we display our latest Instagram pictures

Getting Started

Installing Node

Make sure you have Node (http://nodejs.org) and npm (Node's package manager) installed. npm

comes bundled with Node so as long as you install Node, you'll have access to npm.

http://nodejs.org/

Once you've installed Node, make sure you have access to Node and npm from the command

line. Let's verify installation by checking version numbers. Go into your command line application

and type node -v and npm -v . You should see the following:

$ node -v

v6.10.2

$ npm -v

4.5.0

If you have trouble with the installation process, try restarting your computer and making sure that

Node is in your PATH. Check the Node installation page

(https://github.com/joyent/node/wiki/installation#installing-on-windows) and npm install page

(https://github.com/npm/npm/wiki/Troubleshooting) for more troubleshooting.

Now that we have Node and npm installed, let's get to our first app!

A Very Simple Node App

Code for this example found here: https://github.com/scotch-io/node-booklet-

code/tree/master/app1 (https://github.com/scotch-io/node-booklet-code/tree/master/app1)

Node applications are configured within a file called package.json. You will need a package.json

file for each project you create. This file is where you configure the name of your project, versions,

repository, author, and the all important dependencies. Here is a sample package.json file:

{

 "name": "node-app",

 "version": "1.0.0",

 "description": "The code repository for the Node booklet.",

 "main": "server.js",

 "repository": {

 "type": "git",

 "url": "https://github.com/scotch-io/node-booklet-code"

 },

 "dependencies": {

 "express": "latest",

 "mongoose": "latest"

 },

 "author": "Chris Sevilleja",

 "license": "MIT",

 "homepage": "https://scotch.io"

}

https://github.com/joyent/node/wiki/installation#installing-on-windows
https://github.com/npm/npm/wiki/Troubleshooting
https://github.com/scotch-io/node-booklet-code/tree/master/app1

That seems overwhelming at first, but if you take it line by line, you can see that a lot of the

attributes created here make it easier for other developers to jump into the project. We'll look

through all these different parts later in the book, but here's a very simple package.json with

only the required parts.

{

 "name": "node-booklet-code",

 "main": "server.js"

}

These are the most basic required attributes.

main tells Node which file to use when we want to start our applications. We'll name that file

server.js for all of our applications and that will be where we start our applications.

For more of the attributes that can be specified in our package.json files, here are the

package.json docs (https://www.npmjs.org/doc/files/package.json.html).

Initialize Node App

The package.json file is how we will start every application. It can be hard to remember exactly

what goes into a package.json file, so npm has created an easy to remember command that let's

you build out your package.json file quickly and easily. That command is npm init.

Let's create a sample project and test out the npm init command.

1. Create a folder: mkdir awesome-test

2. Jump into that folder: cd awesome-test

3. Start our Node project: npm init

It will give you a few options that you can leave as default, blank, or customize as you wish. For

now, you can leave everything default except for the main (entry point) file. Ours will be called

server.js .

You can see that our new package.json file is built and we have our first Node project!

Since we have a package.json file now, we can go into our command line and type node

server.js to start up this Node app! It will just throw an error since we haven't created the

server.js file that we want to use to begin our Node application. Not very encouraging to see an

error on our first time starting a Node server! Let's change that and make an application that does

something.

https://www.npmjs.org/doc/files/package.json.html

Now we will need to create the server.js file. The only thing we will do here is console.log out

some information. console.log() is the way we dump information to our console. We're going to

use it to send a message when we start up our Node app.

Here is our server.js file's contents.

console.log('Wow! A tiny Node app!');

Now we can start up our Node application by going into our command line and typing: node

server.js

$ node server.js

We should see our message logged to the console. Remember that since Node is JavaScript on

the server, the console will be on our server. This is in contrast with the client-side console that

we'll find in our browser's dev tools.

TIP: Restarting a Node Application on File Changes

By default, the node server.js command will start up our application, but it won't

restart when file changes are made. This can become tedious when we are developing

since we will have to shut down and restart every time we make a change.

Luckily there is an npm package that will watch for file changes and restart our server when

changes are detected. This package is called nodemon

(https://github.com/remy/nodemon) and to install it, just go into your command line and

type:

$ npm install -g nodemon

The -g modifier means that this package will be installed globally for your system. Now,

instead of using node server.js , we are able to use:

$ nodemon server.js

Feel free to go into your server.js file and make changes. Then watch the magic happen

when application restarts itself!

We'll be using nodemon for the rest of this booklet.

Running an HTTP Server with Node

Code for this example found here: https://github.com/scotch-io/node-booklet-

code/tree/master/app2 (https://github.com/scotch-io/node-booklet-code/tree/master/app2)

Node doesn't just have the ability to process JS files like we just did; it can also create an HTTP

server. We're going to look at setting up an HTTP server with Express (a Node framework) to

serve an HTML file.

In the first app, we only logged something to the console. Moving forward, we will take what we

learned a step further so that we can serve a website to our users. We'll be another step closer to

fully-fledged web applications.

Let's stick with the same application, add the Express framework, and deliver an HTML file. We'll

need the same files (package.json , server.js), and we'll add a new index.html file.

Express: A Node Framework

One of the biggest strengths of Node is that it has support for many packages. The community

submits many packages to npm (https://www.npmjs.com/) and at the time of this writing, there

are 311,863 packages with over 201,817,776 downloads in the last day. That's a lot of

movement!

https://github.com/remy/nodemon
https://github.com/scotch-io/node-booklet-code/tree/master/app2
https://www.npmjs.com/

Packages extend the functionality of our application and there are packages for so many different

use-cases. You may have heard of task-runners like Grunt (http://gruntjs.com/) and Gulp

(http://gulpjs.com/) or even CSS processors like LESS can be packages.

Express is a lightweight platform for building web apps using NodeJS. It helps organize web apps

on the server side. The ExpressJS website (http://expressjs.com) describes Express as "a

minimal and flexible node.js web application framework".

Express hides a lot of the inner workings of Node, which allows you to dive into your application

code and get things up and running a lot faster. It's fairly easy to learn and still gives you a bit of

flexibility with its structure. There is a reason it is currently the most popular framework for Node.

Some of the big names using Express are:

MySpace

LinkedIn

Klout

Segment.io

For a full list of Express users, visit the Express list

(http://expressjs.com/en/resources/companies-using-express.html).

Express comes with several great features that will add ease to your Node development.

Router

Handling Requests

Application Settings

Middleware

Don't worry if these terms are new to you, just know that Express makes Node development

much easier and is a joy to work with.

Installing Express

The packages for a specific Node application are defined in its package.json . To get packages

installed, you can employ one of two methods:

Method #1: Write it into package.json

Method #2: From the command line using npm install

We're going to use method #2 here. Go into your command line and type:

http://gruntjs.com/
http://gulpjs.com/
http://expressjs.com/
http://expressjs.com/en/resources/companies-using-express.html

$ npm install express --save

The --save modifier will let npm know that it should write that package to your package.json

file. If you run that command and go look in the package.json file, you'll notice it will be in a

dependencies section of your file. You'll also notice that a new folder called node_modules is

created. This is where Node stores the packages for a certain project.

This is what makes sharing projects between developers and collaborators very easy. Just send

other users your project and they run npm install to install everything in the dependencies

section.

Since we now have Node and Express ready, let's use both to create an HTTP server and serve

up an HTML file to our users.

Creating an HTTP Server and Serving an HTML File

Let's get the easy part out of the way, the HTML file. In your project, create a new index.html file

and place the following inside:

<!DOCTYPE html>

<html lang="en">

<head>

 <meta charset="UTF-8">

 <title>My Node App!</title>

 <!-- CSS -->

 <link rel="stylesheet"

 href="//maxcdn.bootstrapcdn.com/bootstrap/3.3.2/css/bootstrap.min.css">

 <style>

 body { padding-top:50px; }

 </style>

</head>

<body class="container">

 <div class="jumbotron">

 <h1>My App!</h1>

 </div>

</body>

</html>

We'll be linking to the CSS framework Bootstrap (http://getbootstrap.com/) through Bootstrap

CDN (http://bootstrapcdn.com/) to help us get quick CSS styling for this demo.

http://getbootstrap.com/
http://bootstrapcdn.com/

Let's move forward and create our HTTP server in Node using Express. Delete everything in your

server.js file and here is what we will need:

// grab express

var express = require('express');

// create an express app

var app = express();

// create an express route for the home page

// http://localhost:8080/

app.get('/', function(req, res) {

 res.sendFile(__dirname + 'index.html');

});

// start the server on port 8080

app.listen(8080);

// send a message

console.log('Server has started!');

That file is all that is required to use Express to start an HTTP server and send an HTML file!

require() is the main way that we call packages in Node. Once we have created an Express

application in app , we can define routes on it using the HTTP variable. app.get() creates a

GET route for / .

When creating routes, we will always have access to the req (request) and res (response). The

request contains information from the browser like HTTP agent, information passed in and more.

The response is what we will send back to the user. We are using sendFile() , there are more

things that can be done like sending back JSON data using res.json() .

We can start the server using app.listen() and passing in the port that we want 8080 .

Let's make sure everything works by going into the command line to process this file and start our

server.

$ nodemon server.js

Then we can view our site in our browser at http://localhost:8080 (http://localhost:8080):

Whenever we start a server with Node, it will be placed at http://localhost:PORT_NUMBER .

This is a very easy and quick way to create an HTTP server and start developing. Node and

Express can be used to build amazing applications or if you need it, it can just create a simple

server to work on.

http://localhost:8080/

Great! We've done a lot with Node already:

Installed Node

Processed a very simple file

Used npm to install a package

Create an HTTP server with Express

Serve an HTML file

Let's take this a step further and create an application that actually shows relevant data.

Our First Node App
Code for this example found here: https://github.com/scotch-io/node-booklet-

code/tree/master/app3 (https://github.com/scotch-io/node-booklet-code/tree/master/app3)

For this Node application, we'll be building upon the concepts we've already learned in this

booklet. A common task when building out any sort of application is to use third-party data. We

will be connecting to the Instagram API and grabbing data from there to show our most recent

pictures.

Requirements

Use Express as the Node framework

Use the Instagram Developer API

Use the instagram-node (https://www.npmjs.com/package/instagram-node) package

View our Instagram photos

Template a Node app with EJS (http://www.embeddedjs.com/) and the EJS package

(https://www.npmjs.com/package/ejs)

Directory Structure

https://github.com/scotch-io/node-booklet-code/tree/master/app3
https://www.npmjs.com/package/instagram-node
http://www.embeddedjs.com/
https://www.npmjs.com/package/ejs

- public/

----- css/

---------- style.css

- views/

----- pages/

---------- index.ejs

----- partials/

---------- head.ejs

---------- header.ejs

---------- footer.ejs

- package.json

- server.js

We have the same structure to start our Node application. package.json and server.js are

still there. We will be serving public files (CSS/JS/images) from the public/ folder.

You'll notice that our views are separated into partials/ and pages/. Partials will be reusable

components like the header and footer of our site. It's good practice to separate these out so that

we can keep our code DRY (http://en.wikipedia.org/wiki/Don%27t_repeat_yourself).

EJS (https://www.npmjs.com/package/ejs) will be the templating engine and it is very commonly

used within Node applications. This helps in a number of ways over having plain HTML files. We

are able to:

Display dynamic data sent from the server

Repeat over variables and lists

Template our applications

Let's work with the Instagram data in Node first in our server.js file. Once we have the

Instagram data that we need, we'll move over to our view files to display it.

Setting Up Our Application

Let's create a new folder for this application. It will be a good practice to start from scratch so we

can get used to making Node applications.

package.json

Once your new folder is created, jump into the command line and start your Node application

using:

$ npm init

http://en.wikipedia.org/wiki/Don%27t_repeat_yourself
https://www.npmjs.com/package/ejs

Fill in your information however you like and then we'll install the packages that we need.

$ npm install express ejs instagram-node --save

This will install these three packages into the node_modules/ folder and add them to the

dependencies section of package.json .

server.js

We will now create our server.js file. The main things we need to do in this file are:

Grab the packages we need (Express, EJS, instagram-node)

Configure these packages

Set Instagram API access token

Set EJS as our templating engine

Set Express assets directory (for CSS)

Create a route for the home page

Grab our Instagram images

Pass to our views

Start the server

// GRAB THE PACKAGES/VARIABLES WE NEED

// ==

var express = require('express');

var app = express();

var ig = require('instagram-node').instagram();

// CONFIGURE THE APP

// ==

// tell node where to look for site resources

app.use(express.static(__dirname + '/public'));

// set the view engine to ejs

app.set('view engine', 'ejs');

// configure instagram app with your access token

// we'll get to this soon

// SET THE ROUTES

// ===

// home page route - our profile's images

app.get('/', function(req, res) {

 // use the instagram package to get our profile's media

 // render the home page and pass in our profile's images

 res.render('pages/index');

});

// START THE SERVER

// ==

app.listen(8080);

console.log('App started! Look at http://localhost:8080');

We have grabbed our packages, set the configurations that we need to, created one home page

route, and started our server. This can be done quickly in Node since we have the ability to

app.use() and app.set() on our Express application.

These configurations can be found on the Express and ejs package pages and usually packages

will provide very clear instruction on their GitHub repository or npm page.

While we used res.sendfile() earlier, ejs provides the res.render() function. By default,

Express and ejs will look in a views/ folder so we don't have to specify views/pages/index .

pages/index will be enough.

We will also grab and create an ig object using require('instagram-node').instagram() .

You can find these instructions on the instagram-node

(https://www.npmjs.com/package/instagram-node) npm page.

View Files

Before we can test this server to make sure that everything is working, we'll need a view file to

show! We're going to move quickly through the view files since these aren't the main focus of our

Node application.

views/partials/head.ejs

<meta charset="UTF-8">

<title>My First Node App!</title>

<!-- CSS -->

<link rel="stylesheet"

 href="//maxcdn.bootstrapcdn.com/bootswatch/3.3.7/cosmo/bootstrap.min.css">

<link rel="stylesheet" href="css/style.css">

We're grabbing Bootstrap (http://getbootstrap.com/) from a CDN (http://bootstrapcdn.com/) for

quick styling. We picked one of the Bootstrap files from the Bootswatch

(http://bootstrapcdn.com/#bootswatch_tab) section of the site to switch up from the default

Bootstrap styling.

We are also loading a stylesheet css/style.css . It is in our public/css/ folder, and since we set

express.static() in server.js , our application will serve assets from the public/ folder.

views/partials/header.ejs

<nav class="navbar navbar-inverse">

<div class="container-fluid">

 <div class="navbar-header">

 My Instagram Photos

 </div>

</div>

</nav>

Nothing too crazy here. Just a Bootstrap navbar with a link back to the home page. The span is

one of the Bootstrap glyphicons (http://getbootstrap.com/components/#glyphicons).

https://www.npmjs.com/package/instagram-node
http://getbootstrap.com/
http://bootstrapcdn.com/
http://bootstrapcdn.com/#bootswatch_tab
http://getbootstrap.com/components/#glyphicons

views/partials/footer.ejs

<p class="text-center text-muted">

 Copyright © 1800-2050 · The Coolest App in the World

</p>

Good old copyright all the way back from the 1800s to the future!

views/pages/index.ejs

<!DOCTYPE html>

<html lang="en">

<head>

 <% include ../partials/head %>

</head>

<body class="container">

 <header>

 <% include ../partials/header %>

 </header>

 <main>

 instagram photos will go here

 </main>

 <footer>

 <% include ../partials/footer %>

 </footer>

</body>

</html>

We are using include to pull in the partials. This helps our application grab the other ejs files. In

ejs, the <% and %> tags will be how we display information.

public/css/style.css

body {

 padding-top:50px;

}

footer {

 padding:50px;

}

This is all we'll add for styling right now. We'll style our images after we get them into our

application.

With all that out of the way, let's start our server and view what we've created in our browser:

$ nodemon server.js

We'll be able to see the site in browser at http://localhost:8080 (http://localhost:8080).

Next, we'll use the instagram-node package to get popular photos and display that in our app.

The Instagram API

In order to use the Instagram API, we have to get an access token that allows our app to retrieve

data related to our Instagram account. An access token, as the name goes, is a string-based

token that Instagram uses to authenticate a user trying to access an API endpoint. The

instagram-node SDK is capable of exchanging a client_id as well, if you register your app

with Instagram, but that is beyond the scope of this book so we just use a third-party service,

PixelUnion (http://instagram.pixelunion.net/) to get the access token.

Getting an Access Token

http://localhost:8080/
http://instagram.pixelunion.net/

We will authenticate our application with an access token. This is the equivalent to when you see

an application say Authenticate with Instagram or Login with Facebook. We are using

OAuth2 to get an access token by logging in.

We can get an access token very simply using [http://instagram.pixelunion.net/].

Keep your new access_token safe as this can provide access to your Instagram account as we'll

soon see.

Now that we have the credentials necessary to use the Instagram API, let's take a tour of the API.

Exploring the Instagram API

Let's take a second to look through the API to see what information we can grab. Companies will

provide API documentation so you know what actions are available through their endpoints. And

often, companies will supply an API explorer so that you can use a convenient interface to see

the JSON data that will come out of an API. A couple big companies that offer API explorers are

Facebook (https://developers.facebook.com/tools/explorer/145634995501895/?

method=GET&path=me%3Ffields%3Did%2Cname&version=v2.2) and Twitter

(https://dev.twitter.com/rest/tools/console).

https://developers.facebook.com/tools/explorer/145634995501895/?method=GET&path=me%3Ffields%3Did%2Cname&version=v2.2
https://dev.twitter.com/rest/tools/console

In our example, we won't be using an API explorer. Instead, you'll learn how to use your browser

or a tool like Postman (https://www.getpostman.com/) to view the JSON output of an API call.

We can view the endpoint documentation at the Instagram Developer Documentation

(https://www.instagram.com/developer/endpoints/) site.

Once you view documentation, it can be a little daunting at first. The left panel, with the

submenus under Endpoints, will be where we can see all the API calls. We want to go to the

Users endpoints, and then the one we want to focus on is the GET users/self/media/recent

call. This is a variation of the GET users/{user_id}/media/recent .

Just replace {user_id} with {self} . This will make sure we get our users photos.

Let's add our access_token credentials to the URL like so:

https://api.instagram.com/v1/users/self/media/recent?access_token=[ACCESS_TOKEN]

That is accessing the API with the access token we grabbed earlier.

If you use a browser that formatted JSON for you, like Firefox, you can go ahead and paste the

entire URL, along with the access token, to view the results.

https://www.getpostman.com/
https://www.instagram.com/developer/endpoints/

Alternatively, you can use a tool like Postman to view the results.

On closer inspection, we can see we get an array of the images called data .

If we take a look at a single object in the data array, we can see that it is one photo with all the

information that we need.

We can grab the comments , likes , images , and user info. We're going to use these when

building out our application. We have what we need here:

access_token

An understanding of the API data

Let's move forward and get this data into our application and showing to our users.

Instagram API Terms and Rules

I'd encourage you to always read the API terms and conditions

(http://instagram.com/about/legal/terms/api/) before using it. There are stories of applications that

have grown successful only to have their API access yanked away from them because they

violated the terms.

The main points in Instagram's terms are:

Cannot replace or replicate instagram.com or instagram apps

Can't show more than 30 at a time

Can't participate in any "like", "share", "comment", or "follower" exchange programs

Most of these rules are pretty standard when using APIs. The creator of the API wants to ensure

that its users aren't being bombarded with ads, spam, or fake users. This helps keep the

community at a higher level of conduct.

Well if we can't replicate the website or its applications, what's the point in working with their API?

That is a good question. While Instagram seems to be pretty lenient on that rule since there are

sites and apps that pretty closely replicate the core apps features, there are also very neat

applications like printstagram (http://printstagr.am/), that will allow you to print out square sized

images of your grams.

Instagram-Node

Back in our application, we will need to configure the instagram-node. Let's add this line in our

configuration section of our server.js file:

// CONFIGURE THE APP

// ==

...

// configure instagram app with your access_token

ig.use({

 // get access token here: http://instagram.pixelunion.net/

 access_token: 'MY_ACCESS_TOKEN',

});

...

We've filled in our personal access token.

http://instagram.com/about/legal/terms/api/
http://printstagr.am/

In the future, when you want to build out your larger application, you can authenticate your users

and use their personal access_token to display their information.

The instagram-node package will handle all the calls to the API for us. We don't have to worry

about appending our access_token to any URL like we did in our browser.

The package also wraps a lot of the API calls to make them easier to use. The list of the API calls

can be found on their docs page (https://github.com/totemstech/instagram-node#using-the-api).

The call that we want is for our recent media. That call is:

ig.user_self_media_recent(function(err, medias, pagination, remaining, limit) {});

We'll be using this call to pass the medias to our view.

Getting the Data to Our HTML Views

Express let's us pass data to our views through our routes by passing in an object of data.

Sample Data to EJS

For example, we can pass in a simple message to our view by using:

app.get('/', function(req, res) {

 res.render('pages/index', { message: 'I am data!' });

});

Using ejs in our view, we would be able to display the message variable by using:

<%= message %>

Using Instagram Data

Let's use these concepts with the instagram-node call to grab popular media. In our server.js

file, we will be returning the popular media to the home page. Since this is the case, this call will

be made in our app.get('/'... route.

Grab Instagram Data in Node

In server.js where we defined our main home page route, we will replace that entire route with:

https://github.com/totemstech/instagram-node#using-the-api

// home page route - popular images

app.get('/', function(req, res) {

 // use the instagram package to get popular media

 ig.user_self_media_recent(function(err, medias, pagination, remaining, limit) {

 // render the home page and pass in the popular images

 res.render('pages/index', { grams: medias });

 });

});

When we use the ig.user_self_media_recent() call, we gain access to the medias object.

This contains all of the data that we saw in the API explorer.

Using res.render() , we can pass all the medias data to our view as an object called grams .

Let's use this object in our view now.

Display Instagram Data in View

Inside of the index.ejs file, we will loop over this grams object. We will display the:

Instagram picture

Number of likes

Number of comments

Using ejs, we can loop over the object with grams.forEach() . Replace what is in the <main>

section of our site with the following:

...

<main>

<div class="row">

<% grams.forEach(function(gram) { %>

<div class="instagram-pic col-sm-3">

 <a href="<%= gram.link %>" target="_blank">

 <img src="<%= gram.images.standard_resolution.url %>" class="img-

responsive">

 <div class="instagram-bar">

 <div class="likes">

 <%= gram.likes.count %>

 </div>

 <div class="comments">

 <%= gram.comments.count %>

 </div>

 </div>

</div>

<% }); %>

</div>

</main>

...

We have created a link to the image on Instagram. We also have an instagram-bar to display

the number of likes and comments.

By looping over the grams object, we have access to everything that was returned by the API.

You can use the API explorer to look through the data and call the necessary items.

For the image, we are using images.standard_resolution.url and for likes and comments

respectively, we can use likes.count and comments.count .

If we wanted information about the user, we could use user.username and

user.profile_picture . The caption can be grabbed using caption.text .

Last step is to style up our images. Add the following to your style.css file:

.instagram-pic {

 position:relative;

 padding:10px;

 overflow:hidden;

}

.instagram-pic img {

 padding:5px;

 border-radius:2px;

 box-shadow:0 0 5px rgba(0, 0, 0, 0.5);

}

.instagram-bar {

 position:absolute;

 bottom:30px;

 width:100%;

 left:0;

 padding-left:30px;

 padding-right:30px;

 color:#FFF;

}

.instagram-bar span {

 margin-right:5px;

}

.instagram-bar .likes {

 float:left;

}

.instagram-bar .comments {

 float:right;

}

Finally we have our app with the popular Instagram images!

Conclusion

To recap, we've learned a bit about how Node works and why it's so neat. We've also been able

to:

Process a JS file with Node

Install packages using npm

Create an HTTP server with Node and Express

Used a package to grab API data

Templated an application with EJS

Displayed data with EJS

The concepts here can apply to many different types of applications. Play around with the many

packages available on npm. The possibilities of what can be done with Node are endless.

You can pair it with a frontend framework like Angular (https://angularjs.org/) and a database

system like MongoDB (http://www.mongodb.org/) to create a MEAN Stack application. For more

information on that, check out Scotch School (https://school.scotch.io) where we'll be covering full

https://angularjs.org/
http://www.mongodb.org/
https://school.scotch.io/

video courses on popular topics like Node, JavaScript, Angular, and more.

For more Node and JavaScript tutorials, be sure to check out scotch.io (https://scotch.io) as we

update weekly with new articles and video courses.

https://scotch.io/

